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Influence of 2-D Transceiver Array Aperture Size
and Polarization on 3-D Microwave Imaging of
Subsurface Objects Under Born Approximation

Kemeng Tao , Sijia Ma , and Feng Han , Senior Member, IEEE

Abstract— This article utilizes the spectral analysis method
to investigate the influence of 2-D transceiver array aperture
size and polarization on 3-D qualitative microwave imaging
of subsurface objects. The investigation is performed in three
steps. First, in the framework of the integral equation with
Born approximation (BA), we derive the analytical relationship
between the 2-D spectra of the scattered electric fields and
the reconstructable 3-D object spectrum, which is weighted
by a vector coefficient related to transceiver polarization. The
theoretically reconstructable 3-D spectrum is analyzed. Second,
to obtain the 3-D spectrum for more practical microwave
imaging measurement with the wave attenuation, the evanescent
mode contribution, and the transceiver polarization considered,
we perform the singular value decomposition (SVD) to compute
the discretized integral operator right-singular function whose
spectrum reflects the reconstructable 3-D spectrum. It is shown
that the mutual coupling in two orthogonal horizontal directions
leads to the vertical “allpass” feature and the horizontal “low-
pass” feature in one vertical 2-D plane if the array aperture size in
the orthogonal horizontal direction is large enough. Meanwhile,
the transceiver polarization also has obvious effects on the
reconstructable spectrum. Third, numerical experiments are
implemented to verify the relationship between the transceiver
array configuration and the reconstructable spectrum.

Index Terms— Array aperture size, full-wave inversion
(FWI), microwave imaging, 3-D subsurface objects, transceiver
polarization.

I. INTRODUCTION

MICROWAVE imaging (MWI) employs electromagnetic
(EM) fields at frequencies ranging from hundreds of

megahertz to hundreds of gigahertz to sense a given scene [1].
Due to possessing the intrinsic merit of noninvasive inspec-
tion, the core microwave diagnostic techniques have wide
applications in both civil and industrial areas. They mainly
include biomedical imaging [2], security check [3], near-field
microscopy imaging [4], subsurface prospection [5], materials
evaluation [6], circuit inspection [7], and so on.
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According to the adopted techniques and obtained image
accuracy, MWI can be roughly divided into two categories,
qualitative and quantitative. The commonly used qualitative
approaches include tomography, sampling methods, migra-
tion, and so on. They have been widely adopted in medical
diagnosis and geophysical exploration. For example, the back-
propagation (BP) tomography and the diffraction tomography
are frequently used to invert for organism local parameter
distribution [8] and in the real-time through-the-wall imag-
ing [9], [10]. In the linear sampling method (LSM), the target
image is focused through projecting the scattered EM fields
recorded at the receiver array onto a virtual radiation source
point in the imaging region [11]. It has been hybridized with
an artificial neural network (ANN) and EM full-wave inversion
(FWI) to reconstruct multiple subsurface objects when the
antenna array aperture is limited [12]. Migration methods
are intensively used in the ground-penetrating radar (GPR)
detection. Reverse time migration (RTM) realizes the image
focusing by correlating the incident wave and the reflected
wave in the timestamp of the target space position [13].
Kirchhoff migration (KM) is more efficient than RTM, but
the imaging results are not as accurate as those by RTM [14].
Unfortunately, these qualitative methods can only recover the
geometry information, e.g., shapes, sizes, and locations, of the
subsurface objects.

The EM FWI is the most typical quantitative imaging
method. It is implemented via strictly solving the wave
equations and, thus, is able to simultaneously reconstruct
both the geometrical and dielectric parameters. Researchers
have proposed a series of FWI methods for subsurface object
quantitative reconstruction, such as the Born iterative method
(BIM) [15], distorted BIM (DBIM) [16], variational BIM
(VBIM) [17], contrast source inversion (CSI) [18], and sub-
space optimization method (SOM) [19] in the past decades.
Other studies further extend these methods to the hybrid ones,
including subspace-based DBIM [20], cascade of VBIM and
BIM solvers [21], contrast source extended Born (CSEB)
method [22], and so on. In addition, there are also some novel
proposed methods, such as virtual scattering experiments [23]
and smart rewriting of the EM scattering equations [24], [25],
to mitigate the nonlinearity in the traditional iterative FWI and,
thus, to further enhance the implementation efficiency.

The aforementioned qualitative and quantitative MWI
research is focused on the methods themselves as well as
their applications. There is another research branch regarding
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MWI used for subsurface detection, which is focused on
the influence of configurations of transmitting antennas and
receiving antennas on the reconstruction results. Specifically
speaking, the quantitative relationships between the recon-
structable spectrum bandwidth of the subsurface object and
the transceiver parameters, such as the array size, the array
elevation, spatial offsets between transmitters and receivers,
frequency sweeping step in multifrequency measurement, and
antenna radiation pattern, are analyzed by Fourier transforms
and by singular value decomposition (SVD) and finally also
validated in several numerical experiments of FWI. A lot of
research works have been conducted under the Born approxi-
mation (BA). Thus, they are only valid for weak EM scattering
and still fall into the category of qualitative MWI, although
the whole framework is built on integral equations (IEs).
For example, in [26], the specific relationship between the
spectrum of the scattered electric field at the 1-D receiver array
and the 2-D spectrum of the subsurface contrast is derived
via a series of Fourier transforms starting from IEs with BA.
The “lowpass” feature of the 2-D reconstructable spectrum
of the subsurface object in the horizontal x̂-direction and the
“bandpass” feature in the vertical ẑ-direction caused by the
limited array aperture size or the array elevation are proved and
further validated by SVD analysis and numerical examples.
In [27], the reconstructable spectra of subsurface objects are
compared for multiview-multistatic transceivers with different
offsets and different operation frequencies. In [28] and [29],
the influence of the frequency hopping step on the reconstruc-
tion of subsurface objects is analyzed and validated in detail.
Meanwhile, the optimized inversion strategies are suggested
for multifrequency data. In [30] and [31], the influence of
real antenna radiation patterns on migration imaging and FWI
of subsurface objects is analyzed and validated. However,
most of these works only study how the 1-D transceiver array
configuration influences EM reconstruction of 2-D subsurface
objects. Although, in [32] and [33], the influence of 2-D array
configuration on the inversion performance of 3-D objects is
analyzed under BA when the transmitters and receivers are
placed on two different sides of the imaging domain and on
the same side of the domain, respectively, they only dealt
with the reconstruction of 3-D objects in a homogeneous
air, and the effects of array single/multiple view or stations
are verified. Especially, the influence of 2-D array aperture
size and transceiver polarization on the 3-D reconstructable
spectrum of subsurface objects are not accounted for.

In this article, we extend the previous works [26], [27], [32],
[33] to 3-D EM inverse scattering scenarios for subsurface
imaging and investigate how the 2-D transceiver array aperture
size and polarization affect the EM microwave reconstruc-
tion of 3-D subsurface objects under BA. Compared with
previous works [26], [27], this work has the following new
contributions.

1) A different spectral relationship between scattered elec-
tric fields at the 2-D receiver array and the 3-D
subsurface objects is derived based on the half-space 3-D
layered medium dyadic Green’s functions (DGFs). The
reconstructable 3-D spectrum is weighted by a vector
coefficient that depends on the transceiver polarization.

2) The computed reconstructable 3-D spectrum has a
strong mutual coupling in two orthogonal horizontal
directions, i.e., the large array aperture size in the
x̂-direction can broaden the yz plane 2-D spectrum
bandwidth and vice versa.

3) Meanwhile, due to the mutual coupling effect, the recon-
structable 3-D spectrum shows the vertical “allpass”
feature and the horizontal “lowpass” feature in one verti-
cal 2-D plane if the array aperture size in the orthogonal
horizontal direction is large enough. This is different
from the “bandpass” feature in the vertical direction and
the “lowpass” feature in the only horizontal direction for
the 2-D case given in previous works [26], [27].

4) The mutual coupling effect as well as the spectral
filtering features with the decrease of the array aperture
size are analyzed by SVD of the discretized integral
operator based on BA and successfully validated in
numerical examples.

5) The effects of transceiver polarization on the
reconstructable spectrum of the 3-D subsurface object
are also analyzed by SVD and validated in numerical
experiments. This has never been addressed in the
previous works [32], [33]. Meanwhile, the aforemen-
tioned mutual coupling effect and the vertical “allpass”
feature in some situations are also not dealt with in [32]
and [33].

One should note that, although the previous works [28],
[29] have dealt with the influence of multifrequency data
on the reconstructable 2-D spectra of subsurface objects,
we temporarily do not consider the effects of multifrequencies
in the incident and scattered EM fields on the reconstruction
in this work. The organization of this article is as follows.
In Section II, the analytical relationship between the scattered
electric-field spectrum at the 2-D receiver array and the
spectrum of the 3-D object placed in the subsurface region
is derived. Then, the influence of the 2-D transceiver array
aperture size on the 3-D reconstructable spectrum of the
subsurface contrast is theoretically analyzed in Section III and
is numerically analyzed by SVD in Section IV when the wave
attenuation in the subsurface region and the evanescent mode
are considered. Meanwhile, the influence of the transceiver
polarization on the reconstructable spectrum is also analyzed
by SVD. In Section V, both the theoretical and numerical anal-
ysis results are validated in numerical experiments. Finally,
in Section VI, the conclusion and the possible future work are
presented.

II. THREE-DIMENSIONAL EM LINEAR INVERSE
SCATTERING IN SUBSURFACE DETECTION

As shown in Fig. 1, the background 3-D space is separated
by a planar interface located at z = 0. The transmitter
and receiver arrays are located in the z < 0 region, which
has the dielectric parameters ε0 and µ0. The 3-D scatterer
is located in the z > 0 region, which has the complex
relative permittivity ϵb = εb + (σb/jωε0) and the permeability
µ0. The inhomogeneous scatterer with the spatially varying
relative permittivity εs(r) and conductivity σs(r) is placed
inside the cuboid inversion domain D with the dimensions
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Fig. 1. Configuration of the 3-D EM inverse scattering from inhomogeneous
objects buried in the subsurface domain D with the dimensions of 2a×2b×2c.

of 2a ×2b×2c. The upper surface of the domain D is located
at z = zmin. Both the transmitter and receiver arrays have the
horizontal sizes of 2xM ×2yN . The transmitter array is located
at the z = zs plane, while the receiver array is located at the
z = zr plane. The scattered electric field at a receiver point rr

is evaluated by

Esct(rr ) = jωϵbε0

∫
D

G(rr , r) · Etot(r)χ(r)dr (1)

where

χ(r) =
ϵs(r)− ϵb

ϵb
(2)

is the contrast of the scatterer, G is the layered medium DGF
linking a field point r inside the inversion domain D and the
receiver point rr , and Etot is the total electric field inside D
when the inhomogeneous scatterer is present. Since we focus
on qualitative MWI and only consider the weak scattering
scenarios in this work, (1) is linearized by BA

Esct(rr ) = jωϵbε0

∫
D

G(rr , r) · Einc(r)χ(r)dr (3)

where Einc is the incident electric field inside the inversion
domain D when the scatterer is absent, and it is evaluated by

Einc(r) = G(r, rs) · J(rs) (4)

in which G is the layered medium DGF linking the source
point rs and the field point r inside D and J is the current
density of the infinitesimal dipole transmitter at rs . According
to the transmission-line analogy method given in [34], the
layered medium DGF G can be computed by the 2-D inverse
Fourier transforms

G(rr , r) =
1

4π2

∫ ∫
+∞

−∞

G̃
(
kρ, zr , z

)
e− jkρ ·ρdkρ (5a)

G(r, rs) =
1

4π2

∫ ∫
+∞

−∞

G̃
(
k′

ρ, z, zs
)
e− jk′

ρ ·ρ
′

dk′

ρ (5b)

where G̃ is the spectral-domain DGF in a layered medium
whose specific expression is given in Appendix A and ρ =

x̂(xr − x) + ŷ(yr − y) is the horizontal vector pointing from
the field point r to the receiver point rr , ρ ′

= x̂(x − xs) +

ŷ(y − ys) is the horizontal vector pointing from the source
point rs to the field point r, and kρ = x̂kx + ŷky and
k′
ρ = x̂k ′

x + ŷk ′
y are wavenumber vectors. By substituting (5b)

into (4), substituting (5a) into (3), and substituting (4) into (3),

we can obtain

Esct(rr )

=
jωϵbε0

16π4

∫
D

∫ ∫
+∞

−∞

∫ ∫
+∞

−∞

G̃
(
kρ, zr , z

)
G̃

(
k′

ρ, z, zs
)

e− jk′
ρ ·ρ

′

e− jkρ ·ρdk′

ρdkρ · J(rs)χ(r)dr

=
jωϵbε0

16π4

∫
D

∫ ∫
+∞

−∞

∫ ∫
+∞

−∞

G̃
(
kρ, zr , z

)
G̃

(
k′

ρ, z, zs
)
· J(rs)

e− j(k ′
x −kx)x · e− j(k ′

y−ky)y
· e jk ′

x xs · e jk ′
y ys · e− jkx xr · e− jky yr

dk ′

x dk ′

ydkx dkyχ(x, y, z)dxdydz (6)

where the detailed expression of G̃
(
kρ, zr , z

)
G̃

(
k′
ρ, z, zs

)
·J(rs)

can be found in Appendix B. Then, we make following
definitions:

η = k ′

x − kx

τ = k ′

y − ky

ζ = k ′

z2 + kz2

(7a)

χ̂(η, τ, ζ ) =

∫
D
χ(x, y, z)e− jηx e− jτ ye− jζ zdxdydz. (7b)

Thus, (6) can be rewritten as follows:

Esct(rr ) =
jωϵbε0

16π4

∫ ∫
+∞

−∞

∫ ∫
+∞

−∞

f · χ̂

· e jk ′
x xs · e jk ′

y ys · e− jkx xr · e− jky yr dk ′

x dk ′

ydkx dky (8)

where f is determined by the transceiver polarization. Its
expression can be found in Appendix B. Finally, we assume
that the transmitter array and the receiver array are located at
the same altitude, i.e., zs = zr , and define the spectrum of the
scattered electric field at the receiver array as follows:

Ẽsct(kx , k ′

x , ky, k ′

y)

=

∫ ∫
+∞

−∞

∫ ∫
+∞

−∞

Esct(xs, xr , ys, yr )

e− jk ′
x xs+ jkx xr · e− jk ′

y ys+ jky yr dxsdxr dysdyr . (9)

Thus, (8) can be expressed in a compact form

Ẽsct
= jωϵbε0 · f(kx , k ′

x , ky, k ′

y) · χ̂ . (10)

Obviously, f weights the spectrum of the contrast distribution
inside the inversion domain D, which can be retrieved from
the spectrum of the scattered electric field at the receiver array.

III. INFLUENCE OF THE 2-D TRANSCEIVER ARRAY
APERTURE SIZE ON 3-D SUBSURFACE FWI

WITH BA: THEORETICAL ANALYSIS

In this section, we give a theoretical analysis of how
the 2-D transceiver array aperture size influences the 3-D
inversion of subsurface objects with BA. Specifically speak-
ing, we evaluate the quantitative relationship between the
transceiver array aperture size and the spectrum bandwidth
of the reconstructable 3-D contrast χ . Meanwhile, we also
analyze and explain the mutual coupling of the reconstructable
3-D spectrum in two orthogonal horizontal directions, which
has never been discussed in previous works. For convenience
to perform theoretical analysis, we suppose both the subsur-
face background medium and the 3-D scatterer are lossless,
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Fig. 2. Theoretically reconstructable spectrum of the subsurface 3-D scatterer
contrast when the transceiver arrays have infinitely large aperture sizes.
(a) Three-dimensional spectrum. (b) Two-dimensional ηζ slice of the spectrum
at τ = 0 m−1. (c) Two-dimensional ηζ slice of the spectrum at τ = 10 m−1.
(d) Two-dimensional ηζ slice of the spectrum at τ = 15 m−1.

i.e., σb = 0 and σs(x, y, z) = 0. The operation frequency
is 300 MHz. Other parameters related to the inversion domain
D are εb = 3.0, a = b = c = 0.6 m, and zmin = 0.4 m.
Meanwhile, it is assumed that the inversion domain D is far
enough from the horizontal interface, and thus, the effect of the
evanescent wave on the computation of the theoretically recon-
structable spectrum of the 3-D scatterer contrast is neglected.
Note that the “theoretically” here means the computed spectra
are not influenced by the transceiver polarization, noise con-
tamination, subsurface signal attenuation, and so on. They are
only determined by the valid wavenumber ranges avoiding the
evanescent mode.

Let us first discuss the extreme case in which the 2-D
transceiver array aperture size shown in Fig. 1 is infinitely
large, i.e., xM = +∞ and yN = +∞. In this situation, the
spectra of the electric fields at the receiver array evaluated
according to (9) correspond to the scattered fields sampled
at a 2-D infinitely large plane. In other words, all the
spatial-domain scattered electric-field information generated
by the scatterers buried inside D is incorporated into the
spectra of the scattered fields. Therefore, based on (10), we can
claim that the 2-D transceiver array aperture size has no
harm to the reconstructed 3-D contrast. The reconstructable χ̂
distribution is completely determined by the valid wavenumber
values of the incident and scattered EM waves given in (7a).
As long as k ′

ρ = (k ′2
x + k ′2

y )
1/2 is real and less than kb =

ω(εbε0µ0)
1/2 and kρ = (k2

x + k2
y)

1/2 is real and also less
than kb, both the incident and scattered EM waves are not
evanescent. As a result, both of them can effectively propagate
between the transceiver array and the inversion domain D,
and thus, the ranges of k ′

x , k ′
y , kx , and ky satisfying the

aforementioned conditions determine the ranges of η, τ , and ζ
in (7a), which finally determine the reconstructable spectrum
of the 3-D scatterer contrast. It is shown in Fig. 2(a), and its
2-D ηζ slices for different τ values are shown in Fig. 2(b)–(d).
The roughness of the curve near the ζ = 0 plane is caused
by a lot of numerical tries of different values of k ′

x , kx ,
k ′

y , and kx subject to the definitions given in (7a) when

k ′
z and kz → 0. Note that the 2-D τζ slice is not shown

here, because it is exactly the same as the ηζ one due to
symmetry. We can see that the slices of the 3-D reconstructable
spectrum are similar to the largest area surrounded by the
solid black line shown in [26, Fig. 2]. The spectrum in the
η̂-, τ̂ -, or ζ̂ -direction has a limited bandwidth. The spectral
contents located outside the reconstructable band represent the
nonretrievable χ information, which actually corresponds to
the evanescent waves that cannot reach the transceiver array
and are generated when k ′

ρ is imaginary, kρ is imaginary,
(k ′2

x + k ′2
y )

1/2 > kb, or (k2
x + k2

y)
1/2 > kb. The most obvious

difference between the 3-D reconstructable spectrum and the
2-D one shown in [26, Fig. 2] is missing the “holes.” In other
words, the 2-D spectrum shows a “bandpass” feature in the
vertical ẑ-direction, while the 3-D spectrum shows an “allpass”
feature. The root reason for such a difference is the mutual
coupling of the reconstructable spectrum in two orthogonal
horizontal directions. From a mathematical point of view, the
loss of low-frequency contents in the vertical ẑ-direction of the
reconstructable 2-D spectrum shown in [26, Fig. 2] is because
k ′

z2 and kz2 in (7a) cannot simultaneously take small values.
In a 2-D problem, the k ′

z2 values are uniquely constrained by
k ′

x via (k
′2
z2 + k

′2
x )

1/2
= kb, while kz2 values are also uniquely

constrained by kx via (k2
z2 + k2

x )
1/2

= kb. Obviously, the
low-frequency contents in the vertical ẑ-direction require kx

and k ′
x simultaneously approach kb or −kb, which, however,

leads to the almost same or opposite values of kx and k ′
x . These

two situations are corresponding to the three points (η, ζ ) =

(−2kb, 0) m−1, (η, ζ ) = (0, 0) m−1, and (η, ζ ) = (2kb, 0) m−1

in [26, Fig. 2], since η = k ′
x − kx . In other sampling points,

η falls in the range of 0 < |η| < 2kb, which requires kx and
k ′

x take different values and are not equal to −kb or kb. As a
result, kx and k ′

x cannot simultaneously approach kb or −kb,
and thus, the low-frequency contents in the vertical ẑ-direction
are lost. In physics, this is not difficult to understand. The
low-frequency contents in the 2-D reconstructable spectrum
shown in [26, Fig. 2] indicate the severe suppression of the
vertical spatial resolution, which requires both the incident EM
wave and the scattered EM wave almost lying in the horizontal
x̂-direction, i.e., k ′

x → ±kb and kx → ±kb. Consequently, for
the vertical low-frequency contents, the horizontal resolution
of the reconstruction only can choose two distinct values, the
maximum value when kx and k ′

x are almost opposite and the
minimum value when kx and k ′

x simultaneously approach kb

or −kb. However, in the 3-D case, the situation is completely
different. Although we also force the incident EM wave and
the scattered EM wave almost lying in the horizontal xy
plane to suppress vertical resolution in the reconstruction, the
constraints of the wavenumbers become (k

′2
x +k

′2
y )

1/2
→ kb and

(k2
x + k2

y)
1/2

→ kb. As a result, both the incident and scattered
wavenumbers can be selected in a series of combinations
instead of only being approaching ±kb. The spatial frequency
η = k ′

x −kx and τ = k ′
y −ky reflecting the horizontal resolution

will also change between 0 and ±2kb instead of only taking the
distinct value of 0 or ±2kb. From a physical point of view, the
horizontal incident EM wave can impinge on the subsurface
3-D scatterer from a series of different azimuthal angles,
and the scattered EM waves can also escape away from the
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Fig. 3. Definition of the array angle used to denote the array aperture size.
(a) θx in the xz plane. (b) θy in the yz plane.

scatterer at different azimuthal angles, which naturally widens
the horizontal spatial spectrum bandwidth of the reconstruction
for the vertical low-frequency contents. Since the 2-D infinitely
large aperture size does not exist in reality, we will not discuss
it anymore in this work.

So, let us now focus on how the limited 2-D aperture size of
the transceiver array affects the subsurface 3-D reconstruction
results. In this situation, from a physical point of view, partial
information of the scattered electric fields generated by the
scatterers buried inside D is lost, since the 2-D transceiver
array does not extend infinitely far. Mathematically, the inte-
gration in (9) is only performed within a truncated domain.

Ẽsct in (10) used to infer the 3-D spectrum of the subsurface
contrast χ fails to accurately represent true scattered electric
fields generated by the scatterers. Consequently, the recon-
structed subsurface 3-D scatterers will have distorted shapes.
In the spectral domain, the effective bandwidth will become
narrower. In order to quantitatively explore this, we take the
same approximation suggested in [26, Sec. III] and reflect
the aperture size change in the valid wavenumber value. It is
assumed that the dominant energy of the scattered EM wave is
propagating from a fictitious equivalent source point inside the
domain D to a receiver like a plane wave. Similarly, the major
energy of the incident EM wave from a certain transmitter to
the inversion domain also behaves like a plane wave. Reducing
the 2-D array size, i.e., decreasing xM and yN , is equivalent
to decreasing the array angles θx and θy defined in Fig. 3.
Therefore, obeying the plane wave assumptions mentioned
above, the valid wavenumbers automatically satisfy

|kx |, |k ′

x | < kb sin θx =
kb|xM + a|√

(xM + a)2 + (zmin + 2c + zs)2

(11a)

|ky |, |k ′

y | < kb sin θy =
kb|yN + b|√

(yN + b)2 + (zmin + 2c + zs)2

(11b)

where it has been supposed zs = zr . We now let kx , k ′
x , ky ,

and k ′
y be subject to the inequality in (11) in accord with the

transceiver array aperture size limitation and simultaneously
let (k ′2

x + k ′2
y )

1/2 < kb and (k2
x + k2

y)
1/2 < kb to guarantee

both the incident and scattered waves can normally propagate
and finally obtain the 3-D reconstructable spectrum of the
subsurface scatterer contrast. In order to vividly show how
the reconstructable 3-D spectrum varies with the aperture size
when zs = zr = 0.0 m, we let xM or yN take five typical values

0.0, 0.25, 1.0, 2.25, and 7.5 m. The corresponding five values
of θx or θy are 0◦, 28◦, 45◦, 60◦, and 79◦, respectively. Fig. 4
shows the theoretically reconstructable 3-D spectra of the scat-
terer contrasts for different combinations of θx and θy values.
Their 2-D ηζ slices at τ = 0 are shown in Fig. 5(a)–(e), while
the 2-D τζ slices at η = 0 are shown in Fig. 5(f)–(j). Three
observations are made. First, the reconstructable 3-D band-
width becomes narrower compared with that for the infinitely
large aperture size shown in Fig. 2. Reducing the 2-D array
aperture size directly filters out the high-frequency contents of
the 3-D reconstructable spectrum in the horizontal xy plane.
In mathematics, reducing the transceiver array aperture size is
equivalent to decreasing the maximum valid values of k ′

x , kx ,
k ′

y , and ky according to (11), which results in the reduction
of the valid ranges of η and τ in (7a). In physics, reducing
the transceiver array aperture size lowers the horizontal reso-
lution of the reconstruction, which is equivalent to filtering
out the high-frequency contents of the spectrum. Second,
by contrast, in the vertical ẑ-direction, reducing the array
aperture size filters out the low-frequency contents in the 3-D
reconstructable spectrum and, thus, leads to the “bandpass”
phenomenon. When the maximum values of k ′

x , kx , k ′
y , and ky

decrease, the minimum values of k ′

z2 and kz2 increase, which
leads to the increase of the minimum value of ζ according
to (7a). In physics, the EM wave energy is more constrained in
the vertical ẑ-direction, and thus, the high-frequency contents
of the reconstructable spectrum in the vertical direction are
magnified, but the low-frequency contents are suppressed.
Third, the sizes of the “holes” shown in Fig. 5(f)–(j) indicating
the loss extent of the low-frequency contents in the vertical
ẑ-direction not only increase with the transceiver array aperture
size decrease in the ŷ-direction but also depend on array
aperture size in the x̂-direction. In the extreme case when θx

becomes 79◦, the “holes” for all θy values disappear, as shown
in Fig. 5(j). In this situation, the “bandpass” feature of the
reconstructable spectrum in the vertical direction becomes
an “allpass” feature. In other words, the mutual coupling in
two orthogonal horizontal directions broadens the 3-D recon-
structable spectrum bandwidth. In mathematics, the mutual
coupling is because θx also affects the range of τ when ζ

approaches zero. The value of θx directly restricts k ′
x and kx

varying between −kb sin θx and kb sin θx . Therefore, for small
ζ values in the 3-D reconstructable spectrum representing the
low-frequency contents in the vertical ẑ-direction, |k ′

y | and |ky |

are approximately restricted between kb cos θx and kb sin θy ,
which further restricts the range of τ in (7a). Therefore,
as shown in Fig. 5(f)–(j), for ζ → 0, the τ values are restricted
by −2kb sin θy < τ < −2kb cos θx and 2kb cos θx < τ <

2kb sin θy . For a large θx value, the restriction almost becomes
−2kb sin θy < τ < 2kb sin θy , and thus, the vertical “bandpass”
feature becomes the “allpass” feature. In physics, both the
incident and scattered waves must almost be restricted in the
horizontal plane to achieve the low-frequency reconstruction
in the vertical ẑ-direction. When the transceiver array aperture
size is large in the x̂-direction, the horizontal EM wave can
impinge on and escape away from the scatterer at different
angles, and thus, the horizontal spatial spectrum bandwidth
for the vertical low-frequency contents is naturally broadened.
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Fig. 4. Typical theoretically reconstructable 3-D spectra of the scatterer contrasts when the transceiver arrays have different aperture sizes denoted by different
angles. The corresponding values are annotated in the titles of subfigures.

Fig. 5. Two-dimensional slices of the 3-D spectra shown in Fig. 4. The first row shows the ηζ slices at τ = 0. The second row shows the τζ slices at η = 0.
Each theoretical 2-D spectrum is enclosed within a closed curve.

IV. INFLUENCE OF THE 2-D TRANSCEIVER ARRAY
APERTURE SIZE AND POLARIZATION ON 3-D SUBSURFACE

FWI WITH BA: SVD ANALYSIS

In this section, we consider more practical EM inverse scat-
tering scenarios for subsurface detection. The wave attenuation
in the subsurface region, the contribution from the evanescent
mode, and the transceiver polarization are all incorporated
in the analysis of the 3-D reconstructable spectrum of the
subsurface object. Consequently, the relationship between the
spectrum of the scattered EM field in the 2-D transceiver array
plane and the reconstructable spectrum of the 3-D subsurface
scatterer described in (10) is no longer precise. Therefore,
we adopt the SVD method proposed in [26, Sec. IV] to search
for the solution χ distribution of the EM inverse scattering
problem described in (6).

To this end, we define the linear integral operator I, which
maps the χ distribution inside the 3-D subsurface inversion

domain to the scattered field data in the 2-D transceiver array

I : χ ∈ M → Esct
∈ D (12)

where M is the model space within which the best solution
of χ is searched for and D is the 3-D data space in which the
3-D scattered electric-field data distribute. Meanwhile, it is
assumed that both M and D are Hilbert spaces, and the
L2 inner products denoted by < ·, · >M and < ·, · >D can
be, respectively, defined for them. Since I acts on M and D
continuously, it can be treated as a compact operator [35], and
thus, SVD is allowed to apply to I. Therefore, we define its
singular system {6n,Un,Vn}

∞

n=1, where 6n is the nth singular
value, Un is the nth left-singular function, and Vn is the nth
right-singular function. The reconstructed χ in (6) can be
written as follows [35]:

χ =

∞∑
n=1

1
6n

< Esct, Un >D Vn (13)
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where χ is a column vector containing all the contrast values
in the whole 3-D inversion domain and 6n decreases with the
increase of n. Small 6n values lead to the unstable solution of
the contrast, and the stable one is determined by large singular
values. Therefore, we approximate the contrast solution using
the truncated SVD expansion [36]

χ ≈

N∑
n=1

1
6n

< Esct, Un >D Vn (14)

where N is the threshold for singular values and determined
according to a hypothetical signal noise ratio (SNR). Such
a truncation only takes the first N singular values, restricts
the χ solution to a subspace of the whole model space M
spanned by the first N right-singular functions, and effectively
suppresses the amplification of the scattered field data error to
guarantee the solution stability.

Because the operator I is continuous, the SVD on it can
only be performed numerically. The basic idea is to discretize
the whole system. First, the 3-D inversion domain D is
discretized into M × P×Q cubic voxels. The contrast function
χ is expanded by 1-D piecewise constant functions in three
directions

χ(x, y, z) =

∑
m,p,q

χmpq ·5(x − xm;1x)

·5(y − yp;1y) ·5(z − zq;1z) (15)

where 1x = (2a/M), 1y = (2b/P), and 1z = (2c/Q) are
the supports of the 1-D piecewise constant function in the x̂-,
ŷ-, and ẑ-directions, respectively, and χmpq is the expansion
coefficient. Then, we substitute (15) into (6), separately exe-
cute

∫
D{·}dx ,

∫
D{·}dy, and

∫
D{·}dz with respect to χ based

on the expression of G̃ given in Appendix A, and obtain

φ̂m = 2
sin

[
(k ′

x − kx )(
1x
2 )

]
k ′

x − kx
e− j (k ′

x −kx )xm (16a)

ν̂ p = 2
sin

[
(k ′

y − ky)(
1y
2 )

]
k ′

y − ky
e− j (k ′

y−ky)yp (16b)

ψ̂q = 2
sin

[
(k ′

z2 + kz2)(
1z
2 )

]
k ′

z2 + kz2
e− j (k ′

z2+kz2)zq (16c)

where xm , yp, and zq are the central coordinates of the
1-D constant functions. Finally, by substituting (16) into (6),
we obtain the approximation

Esct(rr , rs) ≈
jωϵbε0

16π4

∑
m,p,q

χmpq

∫∫∫∫
+∞

−∞

f(k ′

x , kx , k ′

y, ky)

· φ̂m(k ′

x , kx ) · ν̂ p(k ′

y, ky) · ψ̂q(k ′

x , kx , k ′

y, ky)

· e− j (kx xr −k ′
x xs ) · e− j (ky yr −k ′

y ys )dk ′

x dkx dk ′

ydky

(17)

in which the polarization of the excitation source and which
component of the scattered electric field is used in the inver-
sion are completely reflected in f. We then sample the scattered
electric fields in a series of discrete points (xr , yr ) at the z = zr

horizontal plane when the excitation dipole sources also are

located in a series of discrete points (xs, ys) at the z = zs

plane. As a result, (17) can be compactly rewritten as follows:

Esct
= Aχ (18)

where A is actually the discrete matrix form of the integral
operator I defined in (12). We now suppose there are Nt x and
Nt y transmitters in the x̂- and ŷ-directions, respectively, and
Nr x and Nr y receivers in the x̂- and ŷ-directions, respectively.
Meanwhile, it is assumed Nr x = Nt x and Nr y = Nt y in this
work, because we let the transmitter array and the receiver
array completely overlap. So, the dimensions of A depend
on the receiver polarization, i.e., which electric component
is used in the FWI. For example, when we neglect the
transceiver polarization, i.e., let f in (10) be one, A has the
dimensions of Nt x Nt y Nr x Nr y × M P Q. By contrast, if we
use all three components E sct

x , E sct
y , and E sct

z in the FWI, A
has the dimensions of 3Nt x Nt y Nr x Nr y × M P Q. These issues
will be discussed later in detail. In addition, one should note
that the evaluation of all elements in A has an unaffordable
computational cost due to the fourfold integral. Fortunately,
it can be lowered by two nested fast Fourier transforms, and
the details will not be discussed here.

Now, let us check how the transceiver array aperture size
affects the 3-D reconstructable spectrum when the transceiver
polarization is neglected, but the subsurface wave attenuation
and evanescent mode contribution are considered. In this
situation, the dimensions of A are Nt x Nt y Nr x Nr y ×M P Q, and
f is set as one. We pick five representative transceiver array
aperture sizes from those shown in Figs. 4 and 5 and apply
SVD to the corresponding A matrices to compute the singular
value distributions. These five aperture sizes are {θx = 0◦,
θy = 79◦}, {θx = 28◦, θy = 79◦}, {θx = 45◦, θy = 79◦},
{θx = 45◦, θy = 45◦}, and {θx = 45◦, θy = 0◦}, respectively.
The widths of the array apertures are {xM = 0.0 m, yN =

7.5 m}, {xM = 0.25 m, yN = 7.5 m}, {xM = 1.0 m,
yN = 7.5 m}, {xM = 1.0 m, yN = 1.0 m}, and {xM =

1.0 m, yN = 0.0 m}, respectively. In addition, to account
for the subsurface wave attenuation, we set the conductivity
of the subsurface background to be σb = 0.001 S/m. Other
model parameters and the operation frequency are the same
as those mentioned in Section III. The obtained normalized
singular value variations for five cases are shown in Fig. 6(a).
Three observations are made here. First, it seems that the
variation of the singular values for a certain transceiver array
aperture size is even smoother than that shown in [26, Fig. 3].
Compared with the 2-D case in which only the interface
reflection and evanescent wave affect the scattered electric
fields at the receiver array, the additional dimensionality in the
current problem also increases the scattered field complexity,
and thus, its degrees of freedom become larger. Second, the
larger is the 2-D array aperture size, the more singular values
are observed for a certain SNR threshold. This is as we
expect. A larger aperture size implies better reconstruction
resolution and broader reconstructable spectrum bandwidth,
which naturally requires more singular values to recover the
contrast distribution inside the inversion domain D. This will
be further validated in the following spectral analysis of right-
singular functions. Third, the singular value numbers for a
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Fig. 6. Normalized singular values of the discrete integral operator I for dif-
ferent transceiver array aperture sizes and polarizations. (a) Five representative
aperture sizes with the transceiver polarization neglected. (b) Single aperture
size of {θx = 45◦, θy = 79◦} with different transceiver polarizations. The
“yx polarization” in the legend means the unit electric dipole source points
at the ŷ-direction, and the Ex component is used in inversion. (c) Single
aperture size of {θx = 45◦, θy = 79◦} with a single polarization for the
transmitter but all electric-field components used in FWI. (d) Single aperture
size of {θx = 45◦, θy = 79◦} with the mixed [1 1 1]

T polarization for the
transmitter but a single polarization for the receiver. The [1 1 1]

T means the
unit electric dipole source has the same intensity in the x̂-, ŷ-, and ẑ-directions.

certain SNR threshold do not monotonically change with the
aperture size in the x̂- or ŷ-direction. For example, the array
aperture size with θx = 45◦ and θy = 45◦ has more singular
values than that with θx = 28◦ and θy = 79◦. In other words,
in a 3-D subsurface MWI problem, the 3-D reconstructable
spectrum bandwidth is not dominated by the 2-D array size in
a single direction.

Then, let us focus on the influence of transceiver polariza-
tion on the singular value distribution of the matrix A. Note
that the transceiver polarization is completely manifested in
the coefficient f whose expression is given in Appendix B.
We take the transceiver aperture size {θx = 45◦, θy = 79◦} as
an example and consider three transceiver polarization cases,
a single polarization for both the transmitter and receiver,
a single polarization for the transmitter but all electric-field
components used in FWI, and the mixed [1 1 1]

T polarization
for the transmitter but a single electric-field component used
in the inversion. The dimensions of the matrix A in these three
cases are Nt x Nt y Nr x Nr y × M P Q, 3Nt x Nt y Nr x Nr y × M P Q,
and Nt x Nt y Nr x Nr y × M P Q, respectively, and the correspond-
ing singular value variations are shown in Fig. 6(b)–(d),
respectively. A direction observation is that the ẑ polarization
of transceivers significantly deteriorates the reconstructable
spectrum of the subsurface 3-D object. If both the transmitter
and receiver are ẑ-polarized, i.e., the unit dipole source points
at the ẑ-direction, and only Ez is used in FWI, the discrete
operator I has the least singular values, as shown by the “zz
polarization” in Fig. 6(b). By contrast, if both the transmitter
and receiver are horizontally polarized or one is horizontally
polarized and another one is mixed polarized, the singular
value variation curves almost overlap with those for the “no

polarization,” as shown in Fig. 6(b)–(d). However, if only the
transmitter or only the receiver is ẑ-polarized, the singular
value number of the matrix A is intermediate. These phenom-
ena are caused by the directivity pattern of an electric dipole.
A ẑ-polarized electric dipole is unable to fully illuminate the
subsurface 3-D objects. By reciprocity, a ẑ-polarized receiver
is also unable to efficiently collect the EM signals scattered
from the objects. As a result, the 3-D reconstructable spectrum
of the subsurface object is narrowed down. In mathematics,
this takes effects via the variation of f in (10).

Since the right-singular functions can reflect the spatial
distribution of the contrast based on (14), we apply the
Fourier transforms to the first N right-singular vectors, and
their summation actually represents the 3-D spectrum of the
reconstructable contrast distribution when subsurface wave
attenuation, evanescent mode contribution, and transceiver
polarization are taken into account. Therefore, we define the
spectrum

sp(η, τ, ζ ) =

N∑
n=1

∣∣Ṽn(η, τ, ζ )
∣∣ (19)

where

Ṽn(η, τ, ζ )

=

∫
D

Vn(x, y, z) exp[− j (ηx + τ y + ζ z)]dxdydz

=

∑
m,p,q

Vn(xm, yp, zq) exp[− j (ηxm + τ yp + ζ zq)]1V (20)

in which 1V is the volume of each discrete voxel in the
subsurface inversion domain and the ranges of η, τ , and ζ

are set as −30 ≤ η ≤ 30, −30 ≤ τ ≤ 30, and 0 ≤ ζ ≤ 30,
respectively. Note that these ranges for η, τ , and ζ are large
enough to incorporate all the spectral contents obtained from
both theoretical analysis and SVD analysis according to (7a)
and (11) as well as the background dielectric parameters and
operation frequency. In addition, in order to guarantee the
stability of the computed spectrum, N in (19) is set according
to −20-dB SNR, i.e., the minimum singular value used in the
computation is greater than 10% of the largest singular value
61. Numerical simulations show that the threshold of −20 dB
is a practical value. The reconstructable spectra cannot be well
represented if the threshold is too large. By contrast, further
reducing the threshold value is not beneficial to refine the
spectra but may deteriorate them due to the instability caused
by numerical errors.

Fig. 7 shows the normalized 2-D slices of the computed
spectra of right-singular functions for the five representative
transceiver aperture sizes in Fig. 6(a) but with the polarization
neglected. The corresponding 2-D slice of the theoretically
reconstructable 3-D spectrum is also overlapped in each
subfigure. We can see that the spectrum distribution of the
right-singular functions is roughly consistent with the theo-
retically reconstructable spectrum of the subsurface scatterer.
The right-singular function spectra also have the obvious “low-
pass” feature in the horizontal xy plane and the “bandpass”
feature in the vertical ẑ-direction when the transceiver aperture
sizes in two horizontal directions are not large, as shown in
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Fig. 7. Comparisons of the normalized 2-D slices of the spectra of right-singular functions obtained by SVD and 2-D slices of the 3-D theoretically
reconstructable contrast spectra for five representative aperture sizes. The first row shows the ηζ slices at τ = 0. The second row shows the τζ slices at
η = 0. Each theoretical 2-D spectrum is enclosed with a closed black curve.

Fig. 7(d), (e), (i), and (j). By contrast, as shown in
Fig. 7(a)–(c), when the array aperture size in the ŷ-direction
increases to θy = 79◦, the right-singular function spectra in
the ηζ plane have the obvious “allpass” feature in the vertical
ẑ-direction. Other observations that can manifest the mutual
coupling of two orthogonal directions include the remaining
η̂-direction bandwidth when θx = 0◦, as shown in Fig. 7(a),
the broader 2-D τζ spectrum bandwidth shown in Fig. 7(h)
than that shown in Fig. 7(f) even both cases have the same
ŷ-direction array aperture size, and the vertical “bandpass”
feature in the ηζ plane shown in Fig. 7(c)–(e), although
they have the same x̂-direction transceiver aperture size. For
3-D MWI of subsurface objects, the wave propagates and is
reflected or scattered in a 3-D space instead of being con-
strained inside a 2-D plane. As a result, the energy of the EM
wave in two orthogonal directions is coupled instead of being
independent. The last interesting observation is that the spectra
of right-singular functions usually have more high-frequency
contents than the theoretically reconstructable spectra. Such a
phenomenon is also observed in [26, Fig. 4]. This is mainly
due to the fact that the contribution from the evanescent wave
is included when the spectra of right-singular functions are
evaluated. The wavenumber of an evanescent EM wave is
larger than the background kb, which is manifested by the
spectral contents located outside the theoretical high-frequency
arc boundary in Fig. 7. In addition, it is assumed that the
major energy of the incident and scattered waves concentrates
in the plane waves when we compute the theoretically recon-
structable spectra. However, when the spectra of right-singular
functions are evaluated, the plane wave assumption for the
incident and scattered waves is removed. Therefore, the sub-
surface scatterer is illuminated by EM waves at wider angles.
The obtained reconstructable spectra are naturally broadened.

Fig. 8 shows the normalized 2-D slices of the magni-
tudes of the coefficients f and the spectra of right-singular
functions for five typical transceiver polarizations when the
array aperture size is {θx = 45◦, θy = 79◦}. We can
see that the difference between the spectra of right-singular
functions with the transceiver polarization taken into account
shown in Fig. 8(f)–(j) and (p)–(t) and the spectra shown in
Fig. 7(c) and (h) for the configuration of “no polarization”
is roughly consistent with the singular-value comparisons

between Fig. 6(a) and (b)–(d). When both the transmitter and
receiver are horizontally polarized, although the bandwidths of
the spectra shown in Fig. 8(f) and (p) are narrower than those
shown in Fig. 7(c) and (h), the changes are marginal. However,
the changes become obvious when only the transmitter is
ẑ-polarized or only Ez is used in the reconstruction, as shown
in Fig. 8(g), (i), (j), (q), (s), and (t). Also, they become
significant when the transmitter is ẑ-polarized, and Ez simul-
taneously is used in the inversion, as shown in Fig. 8(h)
and (r). The changes are mainly manifested by the loss of
low-frequency contents of the 3-D reconstructable spectrum in
the vertical ẑ-direction. Another interesting observation is the
effects of the transceiver polarization on the magnitudes of the
coefficients f, as shown in Fig. 8(a)–(e) and (k)–(o). Obviously,
the ẑ polarization leads to the more concentrated energy of the
coefficient f in the vertical direction, which weights the 3-D
reconstructable spectra shown in Fig. 7(c) and (h) according
to (10) and, thus, finally results in the loss of low-frequency
contents shown in Fig. 8(g)–(j) and (q)–(t).

V. INFLUENCE OF THE 2-D TRANSCEIVER ARRAY
APERTURE SIZE AND POLARIZATION ON 3-D SUBSURFACE

FWI WITH BA: NUMERICAL VALIDATION

In this section, we validate the theoretical analysis results
and the SVD analysis results presented in Sections III and IV
via several numerical tests. The basic configurations of the
inversion are the same as those mentioned in Section III.
However, four cuboid scatterers are placed inside the inversion
domain. They have the same dielectric parameters εs =

3.2 and σs = 1.2 mS/m. The centers of four scatterers are
located at (0.27, 0.27, 0.85) m, (−0.27, 0.27, 0.85) m, (0.27,
−0.27, 0.85) m, and (−0.27, −0.27, 0.85) m, respectively.
Their dimensions are 0.36 × 0.36 × 0.36 m, 0.12 × 0.12 ×

0.36 m, 0.12 × 0.12 × 0.36 m, and 0.36 × 0.36 × 0.36 m,
respectively. The scattered electric fields recorded at the
receiver array are synthesized by the stabilized biconjugate
gradient fast Fourier transform (BCGS-FFT) solver [37]. The
FWI is accomplished by the conjugate gradient solver based
on the sensitivity matrix directly assembled by incident fields,
i.e., based on BA. Also, the Tikhonov regularization factor for
the least-square cost function is 0.001.
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Fig. 8. Normalized 2-D slices of the magnitudes of the coefficients f and the spectra of right-singular functions for different transceiver polarizations. The first
row and the third row, respectively, show the ηζ slices at τ = 0 and the τζ slices at η = 0 of f magnitudes. The second row and the fourth row, respectively,
show the ηζ slices at τ = 0 and the τζ slices at η = 0 of the spectra of right-singular functions. From the 1st column to the 5th column, the transceiver has
the polarization of “yy,” “xz,” and “zz,” transmitter ẑ-polarized but all electric-field components used in inversion, and transmitter mixed [1 1 1]

T polarized
and only Ez used in inversion, respectively. Each theoretical 2-D spectrum is enclosed with a closed black curve.

Because certain polarizations of the transceivers must be
taken into account in FWI, we choose the “yy polarization”
to replace the no-polarization to validate the influence of
the transceiver array size on the linear inversion results.
Fig. 9 shows the reconstructed 3-D profiles of the contrast
moduli of four scatterers as well as the 2-D slices at different
positions for the aforementioned five typical 2-D transceiver
aperture sizes when the excitation electric dipoles point at the
ŷ-direction and Ey is used in the inversion. The model misfits
of the five reconstructed 3-D contrast moduli profiles shown
in Fig. 9(a)–(e) are 88.9%, 84.3%, 75.3%, 92.2%, and 97.4%,
respectively, according to the definition given [38, eq. (16)].
Because we only consider the reconstructed scatterer shapes,
which represent the spectral bandwidth, the large model misfit
values caused by BA have no harm to the following analysis.
Three observations are made. First, the “lowpass” phenomenon
is obvious in the horizontal xy plane. As shown in the second
row of Fig. 9, the highest horizontal resolution is achieved
when the transceiver array has the largest 2-D aperture size
with θx = 45◦ and θy = 79◦. In this situation, not only
four scatterers are obviously separated, but also the boundary
of each scatterer with respect to the background is clearly
discerned. Compared with two big square scatterers, two small
square scatterers have more blurry reconstructed boundaries.
The reconstructed shapes almost become two circular disks.
This difference is as we expect. Spectra of smaller scatterers
have richer spatial high-frequency contents, and thus, their
reconstructed profiles will be distorted more severely if the
FWI operation is bandlimited. If we decrease the aperture size
in the x̂-direction to θx = 28◦, the reconstruction resolution in
the x̂-direction severely deteriorates, and two scatterers cannot

be separated anymore, as shown in Fig. 9(g). However, two
scatterers in the ŷ-direction are still separable. Also, this still
holds even when we decrease θx to zero, as shown in Fig. 9(f).
Second, the mutual coupling of the reconstructed profiles in
the x̂-direction and the ŷ-direction is obvious. By comparing
the 2-D xy slices shown in Fig. 9(f)–(h), we can see that the
resolution of the reconstruction in the ŷ-direction gradually
deteriorates even when we keep the θy unchanged but gradu-
ally decrease the aperture size in the x̂-direction. In addition,
as shown in Fig. 9(f), four reconstructed scatterers still can be
separated in the x̂-direction although θx = 0◦, which is caused
by the large array aperture size in the ŷ-direction. Moreover,
the reconstructed 2-D profile of the smaller scatterer shown in
Fig. 9(p) deforms from the true shape more severely compared
with that shown in Fig. 9(r), although the θy value is the same
in both situations. The small transceiver array aperture size in
the x̂-direction also reduces the 2-D reconstructable spectrum
bandwidth in the yz plane. Third, as shown by the comparisons
between Fig. 9(l) and (m), although the θx has distinct values,
the vertical resolution of the reconstructed 2-D profile in the
xz plane almost keeps unchanged. This phenomenon actually
indicates the vertical “allpass” feature inside the xz plane
when the array aperture size in the orthogonal ŷ-direction
is large enough, as illustrated in Fig. 7(b) and (c). However,
if we decrease θy to 45◦, as shown in Fig. 9(n), the vertical
resolution of the reconstructed 2-D profile in the xz plane
immediately deteriorates. In this situation, only the upper
boundaries of the scatterers are discernible. The overall shapes
of scatterers in the vertical direction almost become invisible,
which indicates a loss of the spatial low-frequency contents of
the reconstructed scatterer profiles. In other words, the vertical
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Fig. 9. Reconstructed contrast moduli distribution for the five representative transceiver aperture sizes. Different columns are corresponding to different
aperture sizes. The first row shows the reconstructed 3-D profiles. The second, third, and fourth rows show the xy slices at z = 0.61 m, the xz slices at
y = 0.33 m, and the yz slices at x = 0.27 m, respectively. White dotted boxes denote true shapes.

Fig. 10. Reconstructed 2-D xz profiles of the contrast moduli distribution
for (a) θx = 28◦ and (b) θx = 45◦. White dotted boxes denote true shapes.

“bandpass” feature replaces the “allpass” feature. In order to
further confirm this distinctive “allpass” feature in the 3-D
reconstruction of subsurface objects, which is lacked in the
2-D problem, we also perform the BA-based 2-D FWI of two
rectangular scatterers whose shapes coincide with the xz slices
of the 3-D scatterers and dielectric parameters are also the
same as those of the 3-D ones. As can be seen, compared
with the 2-D slices shown in Fig. 9(l) and (m), the true
reconstructed 2-D profiles shown in Fig. 10 for θx = 28◦

and θx = 45◦ only have the obvious upper boundaries of the
scatterers. Especially, when θx = 28◦, only the upper boundary
of the big square scatterer can be located, and the overall

Fig. 11. xz slices of the reconstructed contrast moduli distribution for
different transceiver polarizations when the array aperture has the size of
θx = 45◦ and θy = 79◦. (a) zx polarization. (b) zz polarization. (c) Trans-
mitter is ẑ-polarized, but all electric-field components are used in inversion.
(d) Transmitter is mixed [1 1 1]

T polarized, and only Ez is used in inversion.
White dotted boxes denote true shapes.

shapes of both 2-D scatterers are completely lost, which is
consistent with the “bandpass” feature shown in [26, Fig. 2].
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Fig. 11 shows the xz slices of the reconstructed contrast
moduli distribution for different transceiver polarizations when
the 2-D array aperture has the size of θx = 45◦ and θy =

79◦. Compared with the xz slice shown in Fig. 9(m) for
the “yy polarization,” we can see that the z polarization of
the transmitter or the receiver almost has no harm to the
reconstructed upper and lower boundaries of the big cuboid
scatterer. However, the slowly varying ẑ-direction intermediate
part of the big cuboid scatterer almost disappears in the
reconstructed profiles shown in Fig. 11 but still can be seen
in Fig. 9(m). This indicates that the transceiver z polarization
actually filters out the vertical low-frequency contents of the
scatterers in the reconstruction due to the electric dipole
directivity pattern. This phenomenon is also observed in the
reconstructable spectra obtained by SVD shown in Fig. 8.

VI. CONCLUSION AND FUTURE WORK

In this work, we have not only analyzed how the 2-D
transceiver array aperture size and polarization influence the
BA-based qualitative imaging of subsurface 3-D objects the-
oretically and based on SVD, but also implemented several
numerical experiments to validate the analysis results. Com-
pared with the influence of the 1-D array on 2-D reconstruction
results given in previous works, that of the 2-D array on
3-D reconstruction results has similarities but also differences.
The most significant similarity is that both the reconstructable
spectra of subsurface 2-D and 3-D objects show the “lowpass”
feature in the horizontal direction. In addition, phenom-
ena such as more singular values of the integral operators
observed for larger transceiver array aperture sizes and the
high-frequency boundaries of the reconstructable spectra com-
puted from the right-singular functions exceeding those from
theoretical analysis, which have been observed in the 2-D
problem, also show up in the 3-D reconstruction. The most
significant difference is that the reconstructable 3-D spectrum
has the obvious mutual coupling between horizontal directions,
which are mainly manifested in two aspects: a transceiver array
aperture size in one horizontal direction broadening the 2-D
spectrum bandwidth in its orthogonal plane and the appearance
of the vertical “allpass” feature in a vertical 2-D plane if the
array aperture size in its orthogonal direction is large enough.
Adding a dimension means wider incident and scattered angles
of the EM wave in the horizontal plane, which, of course,
leads to the inevitable coupling of the reconstructable 3-D
spectrum in two horizontal directions. Meanwhile, adding a
dimension leads to the transceiver polarization influence on
the reconstructable spectra of subsurface objects, which has
not been addressed in previous works. The SVD analysis
and numerical experiments in this work have predicted and
validated the polarization influence.

The future work will be focused on two aspects. The
first one is to explore the influence of other factors in the
transceiver array configuration, e.g., spatial sampling density
of the scattered fields, antenna radiation pattern, noise level
in measurement, multifrequency data, or even the vertical
aperture size on the reconstructable spectra of 3-D subsurface
objects. Their significant impacts in 2-D inversion have been
studied in previous works [26], [27], [28], [29], [30], [31],

[39]. The second one is to investigate how the background
layer configuration influences the 3-D reconstructable spectra.
That is to say, we will study the reconstructability of 3-D
objects embedded in a planarly multilayered medium.

APPENDIX A

We only discuss how to compute the spectral-domain lay-
ered DGF when the whole space is divided into two parts by
the horizontal interface located at z = z1. The medium located
at z < z1 has the dielectric parameters ϵ1ε0 and µ0, while that
located at z > z1 has the dielectric parameters ϵ2ε0 and µ0.
The transmitter is located at (xs, ys, zs) with zs < z1, and
an arbitrary field point is located at (x, y, z) with z > z1.
The EM wave propagates from medium 1 to medium 2. Note
that we have z1 = 0 and ϵ1 = 1 in our problem. According
to the transmission-line analogy method presented in [34],
the spectral domain G̃

(
k′

ρ, z, zs
)

in (5b) can be evaluated
by

G̃
(
k′

ρ, z, zs
)

=

 g̃xx (z|zs) g̃xy(z|zs) g̃xz(z|zs)

g̃yx (z|zs) g̃yy(z|zs) g̃yz(z|zs)

g̃zx (z|zs) g̃zy(z|zs) g̃zz(z|zs)


(A1)

where
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where the superscript e stands for the transverse magnetic
(TM) mode, while the superscript h stands for the transverse
electric (TE) mode. The voltage and current terms are evalu-
ated by

V p
i (z|zs) =

Z p
1
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(
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p
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)
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I p
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exp
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· exp
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where the superscript p can be e or h and

0
p
21 =

Z p
2 − Z p

1

Z p
2 + Z p

1
(A4)

is the reflection coefficient when the EM wave propagates
from medium 1 to medium 2. Z e

n = (k ′
zn/ωϵnε0) and Z h

n =

(ωµnµ0/k ′
zn) are the characteristic impedances in the nth layer

for the TM mode and the TE mode, respectively. In addition,
the superscript apostrophe means the EM wave is emitted from
the source point at (xs, ys, zs).

G̃
(
kρ, zr , z

)
in (5a) can be derived following the similar

procedure. The only difference is that the EM wave propagates
from the field point (x, y, z) located inside medium 2 to the
receiver point (xr , yr , zr ) located inside medium 1. Therefore,
we must replace z|zs with zr |z in (A1) and (A2), replace
ϵ1 with ϵ2 and replace ϵ2 with ϵ1 in (A2), drop the superscript
apostrophe in (A2), replace Z p

1 with Z p
2 and replace 0

p
21

with 0 p
12 in (A3), replace

[
− jk ′p

z1(z1 − zs)
]

with
[

jk p
z2(z1 − z)

]
in (A3), replace

[
− jk ′p

z2(z − z1)
]

with
[

jk p
z1(zr − z1)

]
in (A3),

and exchange Z p
1 and Z p

2 in (A4) to compute 0 p
12.

APPENDIX B

We define

Ĩ = G̃
(
kρ, zr , z

)
G̃

(
k′

ρ, z, zs
)
· J(rs) (B1)

where Ĩ is a column vector having three elements correspond-
ing to the x̂ , ŷ, and ẑ components of the scattered electric
fields. In addition, Ĩ is not only determined by the specific
expression of G̃ given in Appendix A, but also changes
with the polarization of the excitation source J. Therefore,
we use double subscripts to denote the component of Ĩ. For
example, Ĩxy stands for the 1st x̂ component of Ĩ but is excited
by a unit electric dipole having the ŷ polarization. In the
following, we take Ĩxy as an example to show how to derive
Ĩ. By substituting the expressions given in Appendix A into
G̃ and letting J be equal to [0 1 0]

T , we obtain
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(B2)

where fxy is the x̂ component of the vector f defined in (8)
when the excitation electric dipole is ŷ-polarized. Following
the similar procedure, we can also derive other eight compo-

nents Ĩxx , Ĩxz , Ĩyx , Ĩyy , Ĩyz , Ĩzx , Ĩzy , and Ĩzz . The difference
among these components completely depends on the specific
expression of the coefficient f , which is actually determined
by the polarization of the excitation electric source and which
scattered electric-field component is used in the reconstruction.
In other words, by referring to (10), we can claim that the
inversion performance will be exactly the same if we neglect
the source polarization and the field component used in the
inversion.
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